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Abstract

This paper presents a numerical scheme for stability analysis of the aeroelastic systems in the Laplace domain. The

proposed technique, which is called the PP method, is proposed for when the aerodynamic model is represented in the

Laplace domain and includes complicated transcendental expressions in terms of the Laplace variable. This method

utilizes a matrix iterative procedure to find the eigenvalues of the system and generalizes the other methods such as the

P and PK methods for prediction of the flutter conditions. The major advantage of this technique over the other

approximate methods is true prediction of subcritical damping and frequency values of the aeroelastic modes. To

examine the present technique for stability analysis, some typical examples are used which illustrate its applicability and

advantages.

r 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Aeroelasticity problems are generally classified in two categories: aeroelastic instability prediction and aeroelastic

response calculations. The aeroelastic equations of motion can be treated in either the time or frequency domains. The

stability analysis of the aeroelastic systems is usually performed in the frequency domain, while the dynamic response

calculations are done in the time domain. It is mainly because in the frequency domain, only the frequency

characteristics of the system are considered, while the time domain analysis usually encounters numerical integration

difficulties. Furthermore, most of the aerodynamic theories developed in the frequency domain are limited to harmonic

motion. ‘‘Another reason for the popularity of the frequency domain method is the powerful power spectral description

of random loads such as gust loads, landing loads (over randomly rough surfaces), etc’’ (Dowell et al., 1996).

The general form of the governing equation of an aeroelastic system can be written in the Laplace domain as

U2

b2
Mp2 þ

U

b
Cpþ Kþ q1QðpÞ

� �
q ¼ 0, (1)
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where U is the free-stream velocity, q1 ¼ rU2=2 is the flow dynamic pressure, r is the air density, and b is the reference

length that is usually half of the reference chord. The matrices M, C, and K are the generalized mass, damping and

stiffness matrices of the structure, respectively, and QðpÞ is a matrix describing the generalized aerodynamic force, fa, as

follows:

fa ¼ q1QðpÞq. (2)

The nondimensional Laplace transform parameter, p, can be expressed as

p ¼
b

U
ðgþ ioÞ, (3)

where g and o are the damping and circular frequency, respectively. The reduced frequency k and the rate of decay g in
transient motion are defined as

k ¼
bo
U
; g ¼

g

o
. (4)

The instability condition of the aeroelastic system can be determined using the roots of the determinant of Eq. (1).

Some numerical schemes have been devised to obtain the roots of the flutter determinant. If the matrix QðpÞ is

representable in the following polynomial form:

QðpÞ ¼
XN

n¼0

Qnpn, (5)

where Qn’s are invariant matrices with respect to p, one can write Eq. (1) in the form of a simple eigenvalue problem

which can be solved using standard eigenproblem algorithms. This approach is known as the P method. However, most

of the unsteady aerodynamic theories take on complicated forms and contain transcendental terms with respect to the

complex variable p and thus cannot be used with the P method.

Edwards et al. (1979) employed the Laplace inversion integral to separate the aerodynamic loads into rational and

nonrational parts and showed that only the former are involved in the aeroelastic stability of the wing. They also

evaluated the approximate methods, starting from simple harmonic unsteady theory, with their exact results for the

aeroelastic stability analysis.

The K method is another well-known technique to find the aeroelastic instability condition using Eq. (1). The basic

idea in this method is to add enough artificial structural damping to the system to achieve simple harmonic motion at

every reduced frequency k. Assuming p ¼ ik, Eq. (1) is altered as follows:

½�Mo2 þ Cioþ Kð1þ izÞ þ q1QðikÞ�q ¼ 0, (6)

where z is the artificial structural damping. For a given value of k, Eq. (6) can be written in the form of a standard

eigenvalue problem, which can be solved to find the corresponding U and z. The intersection of the curve of z versus U

with the U axis ðz ¼ 0Þ indicates the critical air speed. The obtained values of damping for each k can only be interpreted

as the required damping (of the specific form) to achieve a simple harmonic motion (Bisplinghoff et al., 1996; Hodges

and Pierce, 2002). Eq. (6) is equivalent to Eq. (1) only at the instability condition where z ¼ 0. Otherwise, the

eigenvalues obtained from Eq. (6) do not correspond to Eq. (1). It is also worth noticing that the K method may

sometimes lead to incorrect results in flutter calculation (Patil et al., 2004).

Hassig (1971) suggested an approximate true damping solution of Eq. (1) by a determinant iteration procedure that is

known as PK method. Hassig presented a detailed description of the superiority of this method over the K method and

showed that it generalizes the P method for stability analysis. In the PK method, the aerodynamic matrix QðpÞ is

approximated by QðikÞ assuming low rate of decay oscillations, resulting in

U2

b2
Mp2 þ

U

b
Cpþ Kþ q1QðikÞ

� �
q ¼ 0. (7)

Rodden et al. (1979) modified the PK method by adding an extra aerodynamic damping matrix into Eq. (7) as

U2

b2
Mp2 þ

U

b
Cþ

rUb

2

QI

k

� �
pþ ðKþ q1Q

RÞ

� �
q ¼ 0, (8)

where QR and QI are the real and imaginary parts of QðikÞ. At a known airspeed, a matrix iterative procedure called

‘‘reduced frequency lining up process’’ is employed to find the corresponding eigenvalue of each aeroelastic mode. The

procedure starts with an initial guess for k to calculate the matrix QðikÞ and then iterates to find the eigenvalue which

satisfies Eq. (8) (Rodden and Johnson, 1994).
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Chen (2000) proved that the added aerodynamic damping matrix in Eq. (8) is valid only at low reduced frequency or

linearly varying QðikÞ and introduced the damping perturbation method for determination of the flutter condition. This

method uses a reduced frequency sweeping technique for the extraction of the eigenvalues and is called the g-method.

The major advantages of this method over the PK method are the better approximation of true damping at subcritical

flight conditions and refining the aerodynamic load matrices for convergent oscillatory motion.

In the present work, a new numerical scheme is proposed for calculation of the eigenvalues of the aeroelastic

equations in the Laplace domain. This numerical technique, termed the PP method, is an extension of the P method for

when the aerodynamic model involves transcendental terms with respect to the Laplace variable and cannot be used

with the P method directly.

2. The proposed algorithm

The generalized aerodynamic force matrix QðpÞ can be written as

QðpÞ ¼ QR
p þ iQI

p ¼
QI

p

k
pþQR

p � gQI
p, (9)

where QR
p and QI

p are the real and imaginary parts of QðpÞ. Note that in the vicinity of very small values of k, as occurs

near the divergence instability condition, the imaginary part of the generalized aerodynamic force matrix QI
p goes to

zero and thus we can replace the term QI
p=k in Eq. (9) as

QI
p

k

�����
k!0

¼
@QI

p

@k

�����
p¼g

. (10)

Substituting Eq. (9) into Eq. (1) yields

U2

b2
Mp2 þ

U

b
Cþ

rUb

2

QI
p

k

 !
pþ ðKþ q1ðQ

R
p � gQI

pÞÞ

" #
q ¼ 0, (11)

that is a system of equations with real coefficient matrices. Defining the following new matrices:

M ¼
U2

b2
M; K ¼ Kþ q1ðQ

R
p � gQI

pÞ; C ¼
U

b
Cþ q1

QI
p

k
, (12,13,14)

one can state Eq. (11) in the state-space form

½AðpÞ � pI�q̃ ¼ 0, (15)

where q̃ and AðpÞ are defined as follows:

q̃ ¼
q

_q

" #
; AðpÞ ¼

0 I

�M�1K �M�1C

� �
. (16)

For any aeroelastic mode at a known airspeed, the iteration begins with an initial estimation of p and thus the

generalized aerodynamic matrix and subsequently the matrix AðpÞ are calculated. The initial guess may play an

important role in the convergence of the iteration procedure to the important aeroelastic modes and eigenvalues.

Assume that we are interested to find the nth aeroelastic eigenvalue branch. At the low airspeeds the eigenvalue of the

nth aeroelastic mode is very close to the natural frequency ðonÞ of the corresponding structural vibration mode and thus

a good initial guess is p ¼ ibon=U . Since all the coefficient matrices in Eq. (11) are real, one can find the complex

conjugate pairs of eigenvalues, from Eq. (15) as follows:

pr
m;n ¼ gr

m;n � ikr
m;n, (17)

where pr
m;n is the mth eigenvalue obtained at the rth iteration. Also the subscript n in pr

m;n shows the aeroelastic mode

number that is under investigation. Considering only positive k in the iteration sequence, the eigenvalues are ordered by

the reduced frequency ðkr
1;nokr

2;no � � �Þ. The iterative procedure is formulated as follows:

½Aðpr�1
n;n Þ � pr

;nI�q̃ ¼ 0, (18)

where pr
;n denotes the eigenvalues set at the current iteration. The convergence criterion is satisfied when

jpr
n;n � pr�1

n;n j � �, (19)
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where � is a small number, which is determined according to the desired error tolerance. The last iteration result can be

used for initial estimation of p for another aeroelastic mode, namely

p0
nþ1;nþ1 ¼ prc

nþ1;n, (20)

where the superscript rc, points to the calculated eigenvalues at the last iteration. Furthermore, the obtained eigenvalues

at the current airspeed can be used as a very good initial guess of p for the next airspeed value. For a set of airspeed

values, this procedure can be used to find the plots of damping and frequency of each aeroelastic mode versus airspeed.

It should be emphasized that to use the PP method, an unsteady aerodynamic code capable of evaluating the

generalized aerodynamic matrix QðpÞ, in terms of the complex variable p is required. It is while the K and PK methods

useQðikÞ and most of aerodynamic codes are developed based on the simple harmonic motion. In the recent years some

aerodynamic codes have been developed that are capable of computing QðpÞ (Esfahanian and Behbahani-nejad, 2002;

Soltani et al., 2004). Furthermore, there are some numerical techniques which can be used to calculate the generalized

aerodynamic matrix using aerodynamic codes that are based on the harmonic motion formulation. For example,

assuming an analytical expression for QðikÞ, the generalized aerodynamic matrix can be approximated using the

damping perturbation method (Chen, 2000) as

QðpÞ � QðikÞ þ gQ0ðikÞ, (21)

where

Q0ðikÞ ¼
dQðikÞ

dðikÞ
. (22)

The matrix Q0ðikÞ can be computed from QðikÞ using finite difference schemes and for a better approximation, higher

order derivatives can be used in Eq. (21). Therefore, even harmonic aerodynamic codes can be easily modified to

implement the damping perturbation method for the calculation of the matrix QðpÞ.
3. Results and discussion

To examine the proposed technique, three typical examples are used for aeroelastic instability analysis. The first

example is a 2-D typical wing section model in incompressible flow. The second example is the Goland wing and the

other example is a 2-D panel in supersonic flow. The PP method is employed along with the P and PK methods and the

results are compared in terms of accuracy and computational performance. The performed studies demonstrate that the

present PP method can be successfully used with the aerodynamics models in the Laplace domain.
3.1. Example 1: 2-D typical wing section

The typical section, as shown in Fig. 1, is a simple spring-restrained model which represents a large aspect ratio wing

where the translational and torsional springs reflect the wing structural bending and torsional stiffness, respectively. The

structural mass and stiffness matrices can be written as

M ¼
m Sa

Sa Ia

" #
; K ¼

Kh 0

0 Ka

" #
, (23)

where m, Sa and Ia are the section mass, static moment and the moment of inertia about the elastic axis, and Kh and Ka

are the stiffness coefficients for plunging and pitching motion, respectively. The aerodynamic force vector in the Laplace

domain can be written as

fa ¼
L̃

�M̃

" #
, (24)

where L̃ and M̃ are the Laplace transform of the lift force and pitching moment about the elastic axis. Using the

unsteady aerodynamic theory for a 2-D flat plate in incompressible potential flow, the aerodynamic matrix QðpÞ can be

written as follows (Bisplinghoff and Ashley, 1972):

QðpÞ ¼ 2pð½M1 þ f̄M2�p
2 þ ½C1 þ f̄C2�pÞ, (25)
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where f̄ is the Laplace transform of the Wagner function, which describes the circulatory lift built-up after a sudden

change of angle of attack, and is given by (Bisplinghoff and Ashley, 1972)

f̄ ¼
K1ðpÞ

p½K0ðpÞ þ K1ðpÞ�
, (26)

where Kn denotes the modified Bessel function of the second kind and order n.

The rational function approximation method is another aerodynamic model which represents the unsteady

aerodynamic loads in terms of several aerodynamic lags (Dowell et al., 1996). This approximation method for two

aerodynamic lags can be obtained using Eq. (25) with the following approximation for f̄:

f̄ ’
1

p
�

0:335

pþ 0:3
�

0:165

pþ 0:0455
. (27)

The finite-state, induced-flow theory of Peters et al. (1995) is another useful unsteady aerodynamics model for a

typical section. This model gives a very good approximation of the unsteady aerodynamic loads in state-space form and

thus it can be easily used with the P method for aeroelastic stability analysis.

Theodorsen (1935) unsteady aerodynamic theory is a convenient model for harmonic oscillations of a typical section

and can be used as an approximate model for the case of motions with low rate of decay. Theodorsen’s function is

expressed with Hankel functions of the second kind in terms of the reduced frequency and thus is used with the K or PK

methods.

Table 1 shows the structural parameters of the typical section for two example cases. To examine the proposed

algorithm, the aeroelastic stability of both examples is investigated using the PK method with Theodorsen

aerodynamics as well as the P method with Peters’ finite-state model with six induced inflow states. Furthermore, the

PP method is employed with the Wagner model and the rational function approximation method in the Laplace

domain.

Figs. 2 and 3 show the results for the stability analysis for Case 1 and Figs. 4 and 5 illustrate the same results for

Case 2. The results show that for Case 1, the PK results are very close to the P and PP results, as long as the damping is
Table 1

Dimensionless parameters of the typical section for two example cases.

Parameter Description Case 1 Case 2

s ¼ oy=oh Uncoupled bending–torsion frequency ratio 0.4 0.2

a Elastic axis location parameter �0.2 �0.2

xa Dimensionless static unbalance 0.1 0.3

m ¼ m=prb2 Mass ratio 20 10

r2a ¼ Ia=mb2 Square of dimensionless radius of gyration 0.24 0.1

ba
bxα

b
KαEA

Kh

U

Fig. 1. 2-D typical section in incompressible flow.
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Fig. 2. Damping variation with airspeed for subsonic typical section (Case 1).

Fig. 3. Frequency variation with airspeed for subsonic typical section (Case 1).
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small, as expected. However for Case 2, there is a considerable difference between the subcritical damping values of the

highly damped aeroelastic mode that are obtained using the PK method when compared with the P and PP methods.

The results of the PP method with the Wagner aerodynamics model match the P method with the Peters finite state

model. The PP results with the rational function approximation compare well with the reference P method and the small

inconsistency between the two solutions is indeed due the used aerodynamics model.
3.2. Example 2: slender subsonic wing

In order to examine the application of the PP method for a more applied aeroelastic problem, the aeroelastic stability

of the Goland wing is considered. It is a uniform wing made of a beam structure with the geometric and structural

properties given in Table 2.
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Fig. 4. Damping variation with airspeed for subsonic typical section (Case 2).

Fig. 5. Frequency variation with airspeed for subsonic typical section (Case 2).

Table 2

The geometric and structural properties of the Goland wing.

Parameter Description Value

L Wing span 6.09m

b Semi-reference-chord 0.9144m

a Elastic axis location parameter �0:2
xa Dimensionless static unbalance 0.33

r2a Square of dimensionless radius of gyration 0.25

m Mass per length 35.719 kg/m

EI Span-wise bending stiffness 9:77� 106 Nm2

GJ Span-wise torsion stiffness 0:988� 106 Nm2

H. Haddadpour, R.D. Firouz-Abadi / Journal of Fluids and Structures 25 (2009) 1177–1188 1183
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Using the modal analysis technique and the Lagrange equations along with the virtual work principle the structural

matrices are derived as follows (Bisplinghoff et al., 1996):

M ¼ m
½Am;n� bxa½Sm;n�

bxa½Sm;n� b2r2a½Im;n�

" #
; K ¼

GJ½Bm;n� 0

0 EI ½Tm;n�

" #
, (28)

where

Am;n ¼

Z L

0

wmðxÞynðxÞdx; Tm;n ¼

Z L

0

w00mðxÞw
00
nðxÞdx; Bm;n ¼

Z L

0

y00mðxÞy
00
nðxÞdx, (29)

in which wmðxÞ and ymðxÞ stand for the bending and torsion mode shapes of the beam, respectively. The generalized

aerodynamic force corresponding to the bending and torsion modes are respectively given by

faðwm Þ
¼

Z L

0

wmðxÞL̃dx; faðym Þ
¼

Z L

0

ymðxÞM̃ dx. (30, 31)

Using Eqs. (30) and (31), the generalized aerodynamic matrix QðpÞ can be written in the form of Eq. (25).

Figs. 6 and 7 show the results for the aeroelastic stability analysis of the Goland wing using two bending modes and

two torsion modes. The results show the variation of aeroelastic damping and frequency versus the air speed at sea level.

The results are obtained using the PK method with Theodorsen’s aerodynamic model as well as the PP method with

Wagner’s and rational function approximation aerodynamics models. Figs. 6 and 7 show that the subcritical damping

and frequency that are obtained using the PP method are approximately the same as those of the PK method for the

third and fourth aeroelastic modes. However the difference between the results for the first and second modes is

remarkable.

3.3. Example 3: 2-D plate in supersonic flow

Fig. 8 shows a simply supported 2-D flat plate in supersonic flow. Assuming that the plate is thin and free from in-

plane stress, and using the modal analysis technique, the diagonal structural mass M and stiffness K matrices can be

written as (Soltani et al., 2003)

Mn;n ¼
rsh

2
; Kn;n ¼

Eh3

24ð1� n2Þ
pn

c

� �4
, (32)

where h is the plate thickness, rs is the material density, n is the Poisson ratio of the material, and E is Young’s modulus

of elasticity. Based on the unsteady potential flow theory, the generalized aerodynamic matrix can be expressed
U (m/s)

g 
(r

ad
/s

)

40
-20

-15

-10

-5

0

PK, Theodorsen’s aerodynamics
PP, Rational function approximation
PP, Wagner’s aerodynamics

60 80 100 120 140

Fig. 6. Damping variation with airspeed for the Goland wing.
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)
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100

PK, Theodorsen’s aerodynamics
PP, Rational function approximation
PP, Wagner’s aerodynamics

60 80 100 120 140

Fig. 7. Frequency variation with airspeed for the Goland wing.

c

h

x

w
U

Fig. 8. 2-D panel in supersonic flow.
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as (Soltani et al., 2003)

QðpÞ ¼Map2 þ Capþ Ka, (33)

in which Ma, Ca and Ka are the aerodynamic mass, damping and stiffness matrices, respectively, and can be written as

Mam;n
¼

1

2cb5
Rm;n, (34)

Cam;n
¼

1

cb
M2 � 2

M2 � 1
; m ¼ n;

0; man;

8><
>: (35)

Kam;n ¼

0; m ¼ n;

2mnð1� ð�1Þmþn
Þ

cbðm2 � n2Þ
; man;

8><
>: (36)

in which M is the Mach number and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � 1
p

, and

Rm;n ¼

R 1
0 f ðx̄Þ

n sinðmpx̄Þ þ ð�1Þmþnm sinðnpx̄Þ
pðn2 �m2Þ

dx̄; man;

R 1
0 f ðx̄Þ

cosðmpx̄Þ
2

þ
sinðmpx̄Þ
2mp

�
x̄ cosðmpx̄Þ

2

� �
dx̄; m ¼ n;

8>>><
>>>:

(37)
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where

f ðx̄Þ ¼ exp
�M2x̄

b2
p

� �
M2

2
þ 1

� �
K0

Mx̄

b2
p

� �
� 2MK1

Mx̄

b2
p

� �
�

M2

2

� �
K2

Mx̄

b2
p

� �� �
. (38)

By eliminating the aerodynamic mass matrix from Eq. (33) one can obtain the quasi-steady aerodynamics model that

is widely used for supersonic panel flutter analysis and is called the piston theory. The quasi-steady aerodynamics model

represents the aerodynamic loads as polynomial expressions in terms of p. Thus, for the aeroelastic stability analysis,

this approximation is required so that one can use the P method, while the complete unsteady aerodynamics model

requires an iterative procedure such as the proposed PP method.

Consider a flat plate with geometric and material properties given in Table 3.

The sound speed is 340m/s and the air density is 1 kg=m3. Using five structural modes, the aeroelastic stability of the

plate is investigated using both the P and PP methods. Fig. 9 shows the damping values of the aeroelastic modes versus

the Mach number and Fig. 10 shows the root-locus of the aeroelastic system. The graphs show slight difference between

the results of the P and PP methods for the low Mach numbers but for the high Mach numbers the results match well.

This is due to the influence of the aerodynamics mass matrix quickly vanishing as the Mach number increases.
3.4. Computational performance

The computational performance of the proposed PP method can be addressed in comparison with the PK method,

since both are iterative in nature. To examine the computational costs of using the PP method over the PK method, the

average number of evaluations of the aerodynamic matrix per velocity point is considered as the comparison index.

For this purpose, numerous test cases with random parameters and 50 velocity points are chosen from each of the

previous three examples. The results show that the PP method can predict true damping values in subcritical conditions,

while the average number of aerodynamic matrix evaluations of the PP method is approximately only 3–17% higher

than the PK method (see Table 4). This increase is attributed to calculations with the complex numbers.
Table 3

The geometric and material properties of the flat plate.

Parameter Description Value

h Thickness 2mm

c Chord 300mm

rs Density 2800kg=m3

E Young’s modulus 70GPa

n Poisson ratio 0.3

Mach number

D
im

en
si

on
le

ss
 d

am
pi

ng

2
-0.03

-0.02

-0.01

0

0.01

0.02

PP, Unsteady aerodynamics

P, Quasi-steady aerodynamics

3 4 5 6

Fig. 9. Damping variation with Mach number for subsonic typical section for supersonic panel.
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Table 4

The percentage of increase in the number of evaluation of the aerodynamic matrix of the PP method in comparison with the PK

method.

Test case Number of examples Increment (%)

2-D typical wing section 100 6–15

Slender subsonic wing 50 8–17

2-D plate in supersonic flow 75 3–11

Dimensionless damping

R
ed

uc
ed

 f
re

qu
en

cy

-0.015 -0.01 -0.005 0 0.005

1

2

3

4

PP, Unsteady aerodynamics

P, Quasi-steady aerodynamics

Fig. 10. Plot of root-locus for supersonic panel.
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4. Conclusion

A new approach was presented to accurately evaluate aeroelastic system eigenvalues when the aerodynamic theory is

in the Laplace domain. For this purpose, a matrix iterative procedure was introduced to determine the subcritical

damping and frequency values of the aeroelastic modes. The proposed method was used to determine the aeroelastic

stability margins of some examples in the subsonic and supersonic flow regimes. The new method provided the

subcritical damping and frequency values of the aeroelastic modes that are in good agreement with the P method. Also

the obtained aeroelastic instability conditions absolutely agree with the results of the other classical methods. The

computational performance of the present algorithm is similar to the PK method and its major advantage over the PK

method is the increased accuracy of the subcritical damping and frequency of the aeroelastic modes.
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